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ABSTRACT Norovirus (NoV) is the leading cause of gastroenteritis outbreaks
linked to oyster consumption. In this study, we investigated the potential of
F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in
oysters by focusing especially on FRNAPH subgroup II (FRNAPH-II). These viral in-
dicators have been neglected because their behavior is sometimes different from
that of NoV in shellfish, especially during the depuration processes usually per-
formed before marketing. However, a significant bias needs to be taken into ac-
count. This bias is that, in the absence of routine culture methods, NoV is targeted by
genome detection, while the presence of FRNAPH is usually investigated by isolation of
infectious particles. In this study, by targeting both viruses using genome detection, a
significant correlation between the presence of FRNAPH-II and that of NoV in shellfish
collected from various European harvesting areas impacted by fecal pollution was ob-
served. Moreover, during their depuration, while the long period of persistence of NoV
was confirmed, a similar or even longer period of persistence of the FRNAPH-II genome,
which was over 30 days, was observed. Such a striking genome persistence calls into
question the relevance of molecular methods for assessing viral hazards. Targeting the
same virus (i.e., FRNAPH-II) by culture and genome detection in specimens from harvest-
ing areas as well as during depuration, we concluded that the presence of genomes in
shellfish does not provide any information on the presence of the corresponding infec-
tious particles. In view of these results, infectious FRNAPH detection should be reconsid-
ered as a valuable indicator in oysters, and its potential for use in assessing viral hazard
needs to be investigated.

IMPORTANCE This work brings new data about the behavior of viruses in shellfish,
as well as about the relevance of molecular methods for their detection and evalua-
tion of the viral hazard. First, a strong correlation between the presence of F-specific
RNA bacteriophages of subgroup II (FRNAPH-II) and that of norovirus (NoV) in shell-
fish impacted by fecal contamination has been observed when both viruses are de-
tected using molecular approaches. Second, when reverse transcription-PCR and cul-
ture are used to detect FRNAPH-II in shellfish, it appears that the genomes of the
viruses present a longer period of persistence than infectious virus, and thus, virus
genome detection fails to give information about the concomitant presence of in-
fectious viruses. Finally, this study shows that FRNAPH persist at least as long as NoV
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does. These data are major arguments to reconsider the potential of FRNAPH as in-
dicators of shellfish viral quality.

KEYWORDS norovirus, F-specific RNA bacteriophages, shellfish, viral pollution

The link between seafood and foodborne illness has been recognized for over a
century (1), and shellfish in particular are well-known vectors of human enteric

viruses, such as norovirus (NoV) or hepatitis A virus (2–4). Among shellfish, oysters are
particularly involved in virus transmission to humans because they are generally
consumed raw.

The contamination of shellfish with enteric viruses occurs mostly when harvesting
areas are affected by fecally contaminated waters, due, for example to inefficient
wastewater treatments or plant overflow following rainfall events (3). Microorganisms
accumulate in shellfish digestive tissues through the filtration of large volumes of
seawater (5–7) and probably because of the presence of particular ligands which may
favor NoV retention (8–10). The winter season is typically associated with shellfish-
borne NoV outbreaks because, during this period, (i) pathogenic viruses circulate in
populations and are excreted in massive amounts, (ii) better virus stability is observed
in the natural environment due to lower water temperatures and low levels of UV
radiation, and (iii) NoV is known to accumulate to high concentrations in shellfish (11).

Currently, shellfish contamination by pathogenic viruses is difficult to evaluate.
Indeed, European regulations (12), which are based on a bacterial criterion, Escherichia
coli detection in shellfish, have been shown to have many limitations for the identifi-
cation of viral contamination, and thus, shellfish compliant with the regulations may be
the source of NoV outbreaks (13–16). This phenomenon, which is mainly due to
different times of virus persistence in water as well as the different accumulation and
elimination kinetics between pathogenic viruses and bacterial indicators in shellfish,
has led the scientific community to conclude that the detection of E. coli is not a
suitable means to track viral pollution in shellfish (16, 17). In such a situation, a new
virological indicator is needed for shellfish risk management, and two completely
different strategies may be considered.

The first strategy, which seems to be increasingly favored, is the specific detection
of pathogenic viral genomes by the use of molecular tools. To this end, a new ISO
standard method has recently been proposed (18). This approach is a relevant tool for
retrospective studies to demonstrate the link between foodstuffs and outbreaks. This
should not hide the major disadvantages of its application to prospective investigations
concerning the evaluation of viral hazards in vulnerable foodstuffs, like oysters. Indeed,
even though it has never been demonstrated in oysters, it is very well recognized that
viral genomes have a better persistence than infectious viruses in the environment, and
thus, only a negligible part of the detected genomes in fact corresponds to infectious
particles (19–22), especially after inactivation by UV light (23). More alarmingly, while
the absence of genomes is necessarily a sign of the absence of the corresponding
infectious viruses, the strict application of the ISO 15216-1 standard expresses a
theoretical limit of detection (LOD) of greater than the 18 particles, usually defined to
be the minimal NoV infective dose (24, 25). It can be 10 to 100 times higher because
of the small volume analyzed by reverse transcription (RT)-PCR, the low recovery rate
during genome extraction, and the presence of (RT-)PCR inhibitors. Thus, except in
some specific cases (i.e., in cases with very high levels of pollution or artificial contam-
ination) (26, 27), the number of genome copies of NoV in oysters is usually close to the
limit of detection (16, 28–31), and all these considerations highlight the difficulties in
interpreting a positive or a negative result when using such an approach.

The second strategy, which has been proposed for years, is the use of other
indicators with the goal of tracking overall viral pollution. Great interest in the use of
fecal bacteriophages as fecal indicators in the natural environment has been shown (32,
33), and among them, F-specific RNA bacteriophages (FRNAPH) have numerous advan-
tages. They have been extensively studied because of their structural similarity to many
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waterborne pathogens. The genome of FRNAPH can be detected by RT-PCR (34, 35),
but infectious particles can also be easily quantified (36) or rapidly detected (37). The
specific detection of FRNAPH subgroup II (FRNAPH-II) and FRNAPH-III may also be used
to track more specifically human fecal contamination (19, 38, 39), which provides
essential information in view of the high degree of host specificity of pathogenic
viruses. In shellfish, these indicators persist longer than E. coli (40), and as for NoV,
better accumulation is observed during the winter period (6, 41). Despite their many
advantages, FRNAPH are not, however, commonly used to evaluate the virological
quality of oysters. A recent review of the literature shows the advantages and limita-
tions of FRNAPH as viral indicators in shellfish management (42). FRNAPH have been
discredited because, even though a number of studies have pointed out a positive
correlation between the presence of FRNAPH and that of enteric viruses in shellfish (24,
26, 43–47), others have expressed opposite views (48–50). A closer look reveals that
most studies compare the detection of infectious FRNAPH with that of the human NoV
genome. This is due to the fact that human NoV cannot be routinely cultivated,
although progress with the cultivation of human NoV has recently been made (51). An
inconsistent correlation between the presence of NoV and that of infectious
FRNAPH is therefore not so surprising when the well-established longer persistence
of viral genomes than infectious viruses, as underlined above, is taken into account.
It may also be assumed that good correlation cases may be linked to recent fecal
pollution, while poor correlation cases may rather be linked to past pollution or the
analysis of shellfish subjected to the depuration process (i.e., shellfish in which
infectious particles were inactivated but genomes may have been detected). The
two cases should not be associated with the same virological health hazard, and
such differences are very difficult to discuss because no studies have compared the
presence of infectious particles and genomes for a single virus in oysters. In the
light of this, a strict comparison should be made only by investigating the genomes
of both NoV and FRNAPH. In doing so, a good correlation between the presence of
NoV and that of FRNAPH, especially when human FRNAPH-II is considered, has been
observed (24, 26). Nevertheless, this observation was made with a limited number
of data.

Because oysters are usually consumed raw, the only treatment which may be used
for their decontamination is their storage in unpolluted water (i.e., the depuration
process). In such a context, the elimination of FRNAPH and NoV by shellfish has also
been investigated. Again, while NoV elimination kinetics is currently assessed using
molecular methods (13, 52–55), results concerning FRNAPH are usually obtained by
infectious virus detection (40, 56–58), and comparison of the results of most studies
may show a significant bias according to the differences in stability between the
genome and the infectious virus. Thus, while the persistence of infectious FRNAPH
seems to be shorter than that of the NoV genome in shellfish, no information, to our
knowledge, about the concomitant elimination of FRNAPH and NoV when these two
viruses are targeted using molecular approaches is currently available. In addition, a
large number of studies have been conducted using shellfish artificially contaminated
with viruses, leading to concentrations very different from those observed in the
environment.

In this context, the aim of this study was to explore if FRNAPH-II (infectious
FRNAPH-II and/or the FRNAPH-II genome) may be good indicators of the virological
quality of oysters, especially during the depuration processes. We first verified the
correlation between the presence of the FRNAPH-II genome and that of the NoV
genome in a significant number of samples (n � 111) that were collected from different
class B harvesting areas over a 1-year period and in which E. coli and infectious FRNAPH
were also monitored to evaluate the overall level of fecal pollution on the basis of
viable microbiological criteria. Second, we compared the elimination of infectious
FRNAPH to that of the corresponding genome, as well as the elimination of the
genomes of both FRNAPH and NoV, in oysters. To be as close as possible to environ-
mental conditions, the study was performed with three different oyster batches natu-
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rally impacted by fecal contamination and subjected to two different depuration
processes.

RESULTS
Relation between the presence of the FRNAPH genome and that of the NoV

genome in shellfish collected from harvesting areas. The collected oysters (n � 111)
were found to be significantly impacted by fecal pollution, given the prevalence of
E. coli and infectious FRNAPH (i.e., 31.5% and 93.7%, respectively). Hence, the detection
of infectious FRNAPH is proof of fecal contamination, even in the absence of E. coli.
Among the analyzed batches, infectious FRNAPH-I and -II were detected in 84.7% and
64.9% of cases, respectively (Table 1), while only two samples (i.e., 1.8%) contained
infectious FRNAPH-III.

The monitoring of NoV and FRNAPH genomes was conducted according to the
ISO 15216-1 standard (18). A high degree of heterogeneity both in the recovery
rates for genome extraction (average, 29.6% � 27.0%) and in the RT-PCR inhibition
rates (23.3% � 17.9%) was observed, but the values for all samples fell within the
performance criteria defined by the standard (i.e., �1% for the extraction rate and
�75% for the RT-PCR inhibition rate). For the mean recovery and inhibition rates,
the LOD was estimated to be about 600 genome copies (gc)/g of hepatopancreas
(HP), nearly 15 times higher than the theoretical value. In the worst case, the
recovery rate (1.2%) and inhibition rate (25%) for a single sample led to an LOD of
greater than 104 gc/g of HP. However, as suggested in the ISO procedure, these two
rates were not used to correct the measured genome concentrations.

Among the analyzed batches, 13.5% were positive for NoV genogroup I (GI) ge-
nomes (Table 1), and the concentrations were estimated to be between 42 and 437
gc/g of HP. Thus, genome concentrations appeared to be relatively low, not exceeding
10 times the LOD. Similarly, NoV genogroup II (GII) genomes were detected in 41.4% of
the samples, with the concentrations ranging from 40 to 1,229 gc/g of HP. A higher
prevalence of the NoV GII genome was observed in shellfish during the winter period
(October to April) than during the summer period (May to September) (Fisher’s exact
test, P � 0.0006), while the NoV GI genome prevalence was not significantly different
between the two seasons (P � 0.2089). Concerning FRNAPH genomes, 52.3% of the
analyzed batches were positive, and, more precisely, the FRNAPH-I, FRNAPH-II, and
FRNAPH-III genomes were detected in 9.0%, 46.8%, and 2.7% of samples, respectively
(Table 1). As with NoV GII, a significant seasonal difference was observed for FRNAPH-II,
with a higher prevalence being detected during the winter period for both the genome
(Fisher’s exact test, P � 0.0025) and the infectious particles (P � 10�4), and an
association between these two parameters was observed (Table 2) (P � 0.0004).
Concerning FRNAPH-I, while a slight seasonal difference in infectivity was detected (P �

TABLE 1 Prevalence of NoV, FRNAPH, and E. coli in oysters

Virus or bacterium

Winter (Oct. to Apr.) (n � 98) Summer (May to Sept.) (n � 13)

Total % of samples
positive (n � 111)

% of samples
positive

No. of samples
positive

% of samples
positive

No. of samples
positive

Genome
NoV GI 15.3 15 0 13.5
NoV GII 46.9 46 0 41.4
FRNAPH-I 9.2 9 7.7 1 9.0
FRNAPH-II 52.0 51 7.7 1 46.8
FRNAPH-III 2.0 2 7.7 1 2.7

Infectious particles
FRNAPH-I 87.6 86 61.5 8 84.7
FRNAPH-II 72.5 71 7.7 1 64.9
FRNAPH-III 1.0 1 7.7 1 1.8

E. coli 32.7 32 23.1 3 31.5
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0.0277), no difference in the prevalence of its genome was observed between these
two periods (P � 1) (Table 1).

Finally, when the three-level classification used to rank the microorganism concen-
trations in shellfish was considered, a significant association between the presence of
the NoV GII genome and that of the FRNAPH-II genome in shellfish (P � 10�4) was
observed (Table 3). Conversely, no association between the presence of the FRNAPH-I
genome and that of the NoV genome was observed (P � 0.2797). The same conclusions
might be drawn when a two-level classification (i.e., a positive or negative result for
microorganism detection) was used (P � 10�4 and P � 0.1910, respectively).

Elimination of FRNAPH and NoV GII during the depuration process of oysters.
In view of the association between the presence of the NoV GII genome and that of the
FRNAPH-II genome in the samples, further investigations were performed to study the
behavior of these microorganisms during shellfish depuration. Shellfish batches (n � 3)
were subjected to two different storage conditions, namely, in a tank with UV-treated
seawater and in natural seawater. During their storage, both FRNAPH-II and NoV GII
were monitored by targeting of their genomes, while infectious FRNAPH were also
quantified by plaque assay, and the presence of the FRNAPH subgroup was investi-
gated by a sensitive qualitative approach (37).

Despite the absence of E. coli in the 3 batches, the analyzed samples were found to
be significantly impacted by fecal pollution, with an initial concentration of total
infectious FRNAPH of 84, 136, and 67 PFU/g of HP in batches 1, 2, and 3, respectively.
Initial NoV GII genome concentrations were 593, 992, and 1,230 gc/g of HP, respec-
tively. FRNAPH-II genome concentrations were of the same order of magnitude in
batches 1 and 2 (i.e., 644 and 860 gc/g of HP, respectively), while in the third batch, the
concentration reached 1.9 � 104 gc/g of HP. From a qualitative point of view, infectious
FRNAPH-I was detected throughout the study period (i.e., over 30 days), whereas
infectious FRNAPH-II were last detected in batches 1, 2, and 3 at days 17, 14, and 21,
respectively (Fig. 1A). Concerning the genomes, both the NoV GII and FRNAPH-II
genomes were detected throughout the study period, except in batch 3, in which the
NoV genome was last detected at day 28 (Fig. 1B).

A statistically significant difference in the concentrations between the two depura-
tion conditions was observed for the NoV GII genome (Wilcoxon signed test, P �

0.0027), with the geometric mean value measured during storage in natural seawater
being 21% higher than that measured during depuration in the tank (Fig. 1B). On the
other hand, no significant differences between the two conditions were shown for the
FRNAPH-II genome (P � 0.0543) and FRNAPH infectious particles (P � 0.7156). This
result led us to consider the use of the paired values obtained under the two conditions

TABLE 2 Contingency table for detection of infectious FRNAPH-II particles and the
FRNAPH-II genome in oyster batches

FRNAPH-II genome detection

No. of samples with the following result for
infectious FRNAPH-II detection:

� � ��

� 28 17 14
� 10 6 15
�� 1 5 15

TABLE 3 Contingency table for detection of FRNAPH-II and NoV GII genomes in oyster
batches

FRNAPH-II genome detection

No. of samples with the following result for
NoV GII genome detection:

� � ��

� 49 9 1
� 11 13 7
�� 5 7 9
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at a given time as replicates for use in subsequent statistical analyses. However, it must
be emphasized that the variability corresponding to each of such formed pairs includes
both the lab variability and the variability induced by the possible differences between
the depuration processes.

Comparison of the variability of the experimental results within the pairs ob-
tained for each of the three parameters during depuration showed that the

FIG 1 Behavior of FRNAPH and NoV GII during oyster depuration processes. (A) Comparison of the decrease of FRNAPH infectious particles with that of the
FRNAPH-II genome. (B) Comparison of the decrease of the NoV GII genome with that of the FRNAPH-II genome. The limit of detection was 40 gc/g of shellfish
hepatopancreas (HP). Squares, storage in UV-treated seawater tanks; circles, storage in natural seawater; black symbols, FRNAPH infectious particles; green
symbols, FRNAPH-II genome; red symbols, NoV GII genome; C, concentration. Dotted lines correspond to the log-linear decays observed after day 1. The P value
corresponding to the t test for comparison of the two slopes is indicated in each graph.
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variances observed within and/or among batches could be considered homoge-
neous (Cochran’s test, P � 0.05). This outcome prompted the calculation of a
unique coefficient (i.e., the coefficient of variation [CV]), which may characterize the
variability associated with each parameter. Thus, CV was estimated to be 54.01%
(95% confidence interval [CI0.95] � 38.79%, 67.27%) for NoV GII genomes, 75.62%
(CI0.95 � 52.25%, 97.00%) for FRNAPH-II genomes, and 70.84% (CI0.95 � 37.89%,
98.61%) for FRNAPH infectious particles. These values point out the high level of
variability in the experimental results which were obtained with each of the
considered microorganisms.

For each of the parameters, decay coefficients were calculated and are reported
in Table 4. Interestingly, a two-phase decrease may be described for each of them,
with a breaking point being observed after the first day of storage. This phenom-
enon seemed to be particularly marked for the FRNAPH-II genome, for which a
sharp slowdown in depletion was observed after the first day (i.e., the decay
coefficient was �0.28 for the first day and �0.98 after day 1).

Taking into account the two-phase decrease, regression analyses were performed
after the first day of depuration, and their outcomes are summarized in Table 5. From
these results, it can be pointed out that the slopes of all the fitted lines represented in
Fig. 1A and B corresponding to both the NoV GII genome and FRNAPH-II infectious
particles are significantly different from zero (t test, P � 10�3), in contrast to the
findings for the FRNAPH-II genome (P � 0.25). With regard to the F tests (data not
shown) which were performed to compare the variances of both the departures from
the linear regression and the replications, 8 of the 9 tests carried out yielded a result
that was not statistically significant (P � 0.20). Despite the high level of variability in the
experimental results obtained in this study, all these results favor the suitability of the
log-linear model. In other words, this means an exponential decay for each of the three
parameters as a function of time after day 1. Note that the decay coefficients estimated
from the slopes of the regression lines (Table 5) are very similar to those reported in
Table 4, which were calculated from the geometric weighted means of the empirical
decay rates.

Furthermore, the estimated decay coefficient for the FRNAPH-II genome was signif-
icantly higher than the corresponding coefficient for both FRNAPH infectious particles
and the NoV GII genome (t test, P � 10�4). When seen in another way, this means that
the decay of the FRNAPH-II genome is significantly slower than that of FRNAPH
infectious particles and the NoV GII genome. More precisely, the times required for a
90% reduction in concentration (T90 values), which were estimated before and after the
day 1 breaking point, were 3.7 day�1 and 36.4 day�1, respectively, for the NoV GII
genome, 1.8 day�1 and 140.7 day�1, respectively, for the FRNAPH-II genome and 4.3
day�1 and 21.3 day�1, respectively, for FRNAPH infectious particles.

TABLE 4 Estimated decay coefficients for each of the parameters during the depuration
of oysters

Batch Timea (day)

Estimated decay coefficient (CI0.95)

NoV GII genome FRNAPH-II genome Infectious FRNAPH

1 �1 0.55 0.32 0.27
�1 0.92 (0.89, 0.95) 0.94 (0.91, 0.97) 0.94 (0.90, 0.97)

2 �1 0.52 0.28 0.75
�1 0.91 (0.89, 0.94) 0.98 (0.95, 1.01) 0.86 (0.83, 0.89)

3 �1 0.52 0.23 0.99
�1 0.93 (0.89, 0.96) 1.04 (1.03, 1.08) 0.93 (0.90, 0.96)

All �1 0.53 0.27 0.59
�1 0.90 (0.88, 0.92) 0.99 (0.97, 1.01) 0.90 (0.89, 0.92)

aFor times of �1 day, estimation of the decay coefficients was computed from a limited number of
observations (i.e., n � 6), hence the absence of CI0.95.
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DISCUSSION

The first objective of this study was to evaluate the interest in FRNAPH as indicators
of NoV pollution in oysters by using comparable molecular approaches (i.e., RT-PCR) for
the detection of both viruses. The second objective was then to elucidate the difference
between infectious viral particles and the viral genome in terms of their prevalence and
behavior in oysters naturally affected by fecal contamination, as well as during depu-
ration processes, focusing on a single virus (i.e., FRNAPH).

Shellfish were collected over a 1-year period from several class B harvesting areas
(n � 111 samples), which explain the significant number of samples positive for E. coli
(i.e., 31.5%). The use of a qualitative approach (37) underlined that more than 90% of
the specimens were positive for FRNAPH infectious particles (i.e., 84.7% were positive
for infectious FRNAPH-I and 64.9% were positive for infectious FRNAPH-II). We con-
firmed, in accordance with other works, the lack of a relation between the regulatory
indicator E. coli and infectious viral indicators, such as FRNAPH (Fisher’s exact test, P �

0.8374) (24, 41, 44). Compared to the results obtained during a 1-year period of
surveillance of marketed oysters, for which only 34% and 7% of the samples were
positive for infectious FRNAPH-I and -II, respectively, the oysters sampled in the present
study seemed to be more impacted by fecal pollution when the same qualitative
method was used (37).

Under such conditions, a significant relationship between the presence of the NoV
GII genome and that of the FRNAPH-II genome in oysters was observed (P � 10�4), with
a higher prevalence being found in winter. On the basis of the analysis of a large
number of batches from several areas in Europe, this means that both FRNAPH-II and
NoV GII infectious particles and FRNAPH-II and NoV GII genomes have similar behaviors,
including occurrence in water, adhesion to oyster tissues, as well as persistence and
release from shellfish.

When the focus was only on the depuration conditions applied to oysters coming
from polluted areas, many studies have shown not only the impact of the physico-
chemical conditions (i.e., water temperature, salinity, dissolved oxygen) and shellfish
physiology but also the impact of the initial microorganism load (i.e., natural or artificial
contamination) (59–62). For these reasons, we decided to work with oysters that were
naturally contaminated with NoV and that were also positive for FRNAPH because of
the high correlation of the presence of the two viruses discussed above. The initial viral
loads were therefore moderate, but conditions were much closer to those found in the
environment. Interestingly, we demonstrated no differences in FRNAPH decay between
storage in natural seawater and storage in UV-treated seawater tanks and minor
differences in NoV decay in favor of depuration in the tank.

We confirmed, as has also been reported in numerous studies (13, 52, 53, 55), the
very long period of persistence of the NoV genome during shellfish storage. Such
a long period of persistence (i.e., �30 days in our study) has, however, compro-
mised the use of any other proxy indicators, including the presence of FRNAPH.
Moreover, the suspected involvement of specific ligands explaining the persistence
of NoV in shellfish has been an additional argument for rejecting FRNAPH as an
indicator (8, 63). However, it is important to note that in all aforementioned studies,
a comparison of NoV persistence with FRNAPH persistence was rarely made, and if
so, only infectious FRNAPH were followed.

We fully confirmed the results described above in terms of the persistence of the
NoV genome compared to that of infectious FRNAPH during the depuration of oysters.
However, when investigating the persistence of FRNAPH by genome targeting, we
clearly demonstrated the similar behaviors of the NoV and FRNAPH-II genomes or even
the longer period of persistence of the FRNAPH-II genome. These observations may
reopen the debate on the use of FRNAPH as an indicator of the presence of NoV in
shellfish.

Under these circumstances, the second point that needs to be discussed here is the
relevance of the detection of viral genomes to assessment of the presence of infectious
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particles in shellfish. To that end, conclusions should be drawn on the basis of data
collected during the monitoring of the same virus by following both infectious particles
and the associated genome by culture and molecular detection, respectively. Thus,
while the FRNAPH-II genome was present in shellfish throughout their storage, no
corresponding infectious particles were detected in the last days when the sensitive
qualitative approach proposed by Hartard et al. (37) was used. The long period of
persistence of the FRNAPH-II genome and the inability to eliminate it even after an
extended depuration process illustrate the fact that linking the presence of genomes
with that of the corresponding infectious microorganisms appears to be an unconvinc-
ing strategy, including for NoV risk management. In that sense, it should also be
underlined that, despite moderate initial concentrations, NoV GII genomes were also
detected in shellfish during the entire study period (i.e., over 30 days).

As previously observed using murine NoV (64), a two-phase elimination could thus
be considered during genome decay, with a pronounced decrease occurring in the first
days of storage, followed by subsequent stabilization with a lower elimination rate,
leading to a residual basal concentration of viruses in shellfish. Hence, the first phase
could be associated with the elimination of viral particles, while the second phase could
just be the result of the degradation of residual genomes present in shellfish, leading
to concentrations close to the LOD, as determined using the ISO 15216-1 standard (18)
(i.e., 40 gc/g of HP in the best case), and, thus, amounts hardly quantifiable in such
samples. Taking into account the striking persistence of genomes compared to that of
viral particles, the 28-day minimum closure period for shellfish production areas,
established following a significant pollution incident or a known NoV outbreak, may
need to be discussed (30, 65).

Finally, similar conclusions concerning the presence of infectious particles and viral
genomes may be drawn from the analyses of the 111 oyster samples impacted by fecal
contamination in the several class B harvesting areas studied. Although an association
between the presence of the FRNAPH-II genome and that of FRNAPH-II infectious
particles (P � 10�3) was observed, the presence of the genome was predictive of
infectivity in only 62% of cases. Furthermore, among the samples negative for
FRNAPH-II infectious particles, 28% were positive for the corresponding genome (i.e.,
false-positive results); this finding was mainly linked to the better persistence of the
genome than infectious particles (19–22). In opposition to this finding, among the
samples positive for infectious particles, 43% were negative for the genome (i.e.,
false-negative results), which is probably explained by the difference between the LODs
of the methods used (i.e., 1 PFU/20 g of whole shellfish by culture and up to 104 gc/g
of HP in the worst-case scenario by use of the ISO 15216-1 standard, taking into account
the recovery and inhibition rates).

To conclude, this study reveals that genome detection provides limited information
about the presence of associated infectious viral particles in oysters on the basis of
targeting of FRNAPH. This fact was observed both in harvesting areas and when oyster
depuration processes were monitored. Indeed, a significant difference between infec-
tious particle and genome decay was observed, and viral genomes may still be present
in shellfish and, more broadly, in food commodities in the absence of infectious
particles. Conversely, the presence of infectious viral particles is undoubtedly associ-
ated with the presence of the corresponding genomes, but the latter is commonly
unquantifiable or even undetectable using currently available standardized methods.

Concerning the use of a proxy indicator which may thus be useful to assess viral
pollution more effectively, similar trends and a relationship between the behavior of
NoV and that of FRNAPH-II have been observed, with the same limitations in the
detection of their genomes being present. However, contrary to the infectivity of NoV,
the infectivity of FRNAPH-II is easily assessable, and their presence should therefore be
reconsidered as potential indicators of a viral hazard in shellfish. Further investigations
are now needed to gain a better understanding of the behavior of infectious FRNAPH
and that of infectious NoV in shellfish and in the associated environment. This will be
made possible when the cell culture approach is more routinely handled for NoV.
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MATERIALS AND METHODS
Oyster samples. In order to study the relationship between the presence of NoV and that of

FRNAPH-II in shellfish, 111 batches of oysters (Crassostrea gigas) were collected from different harvesting
areas in France (n � 1) and Ireland (n � 8) between January 2016 and January 2017. All sampled
harvesting areas were classified as class B harvesting areas (i.e., they had E. coli concentrations of
between 230 and 4,600 most probable number [MPN]/100 g of flesh and intravalvular liquid [FIL]),
according to European regulations (12).

Concerning the behavior of microorganisms during depuration processes, three oyster batches that
were collected from class B harvesting areas and that were positive for NoV genome detection were
investigated. After collection, the specimens were split into two different subbatches and subjected to
different depuration conditions over 31- to 35-day periods. After sampling, all specimens were kept at
4°C, and analyses were performed within 7 days.

Depuration processes. The first half of the batches was stored in a pilot tank containing seawater
disinfected by continued UV treatment (80 to 90 mJ/cm2). The water temperature was 12.1°C � 0.7°C.

The second half was placed in an area with natural class A seawater. The water temperature of the
area was 8.7°C � 2.7°C during the study period.

NoV and FRNAPH genome detection. Human NoV genogroup I (GI) and NoV genogroup II (GII)
genome detection from oysters was performed by strictly following the NF EN ISO 15216-1 standard (18).
Briefly, after dissection of 10 live specimens, 2 g of hepatopancreas (HP) was finely chopped, supple-
mented with 10 �l of a suspension of 104 infectious particles/ml bovine enterovirus type 1 (ATCC VR-248)
as a process extraction control, and then incubated with 2 ml of proteinase K (3 U/ml) at 37°C for 1 h with
stirring, followed by a second incubation at 60°C for 15 min. After centrifugation (3,000 � g for 5 min),
the supernatant was collected and RNA extraction from 500 �l was performed using NucliSens magnetic
extraction reagents (bioMérieux, Marcy l’Etoile, France) in 100 �l of elution buffer, according to the
manufacturer’s recommendations. NoV GI and GII genomes were detected using an RNA UltraSense
one-step quantitative RT-PCR system (Life Technologies, Carlsbad, CA, USA) according to the recom-
mendations of the ISO 15216-1 standard, and quantification was carried out using a standard curve with
a concentration range of 101 to 105 genome copies (gc)/reaction mixture.

For each subgroup, FRNAPH genome detection was performed from the same RNA extracts pro-
duced for NoV detection. Quantification was performed using an RNA UltraSense one-step quantitative
RT-PCR system (Life Technologies, Carlsbad, CA, USA) from 5 �l of RNA in a 20-�l reaction volume using
the primers (1,000 nM) and probes (300 nM) designed by Wolf et al. (35). The choice of these RT-PCR
systems was motivated here by their high sensitivity, even if other systems seem more appropriate for
specifically detecting human FRNAPH (19). Quantification was carried out using a standard curve with a
concentration range of from 2.5 to 2.5 � 104 gc/reaction mixture, and the reaction was carried out at
50°C for 30 min (for reverse transcription) and 5 min at 95°C, followed by 45 cycles of 15 s at 95°C and
40 s at 58°C.

According to the sample preparation procedure and the instructions given in the ISO 15216-1
standard, the theoretical LOD for NoV and FRNAPH, corresponding to the presence of 1 gc in a PCR well,
was close to 40 gc/g of HP.

Infectious FRNAPH detection and genotyping. Infectious FRNAPH were detected by two different
methods using Salmonella enterica serovar Typhimurium WG49 (NCTC 12484) as the host strain (66). The
first method was derived from the ISO 10705-1 standard (36). For each oyster sample, HP tissues from 5
specimens were dissected and mixed with 2 volumes of phosphate-buffered saline– 0.3% peptone for 3
min in a DT-20 tube with an Ultra-Turrax tube drive (IKA-Werke GmbH & Co. KG, Staufen, Germany). After
centrifugation (2,000 � g for 5 min), the supernatant was collected. The culture of 1.5 ml of supernatant
was performed four times in 150-mm-diameter petri dishes, allowing the analysis of 6 ml of supernatant
(corresponding to 2 g of HP). The infectious FRNAPH concentration was expressed as the number of PFU
per gram of HP after 18 h of incubation.

The second method used for infectious FRNAPH detection was a qualitative integrated cell culture
(ICC)-RT-quantitative PCR (qPCR) approach performed on the whole shellfish without any dissection step,
as described by Hartard et al. (37), with slight modifications. Briefly, 10 oyster specimens were mixed for
3 min with a neck blender. Culture of infectious FRNAPH was then performed in 250-ml Erlenmeyer flasks
by adding 20 ml of the oyster mixture, 25 ml of 2� tryptone-yeast extract-glucose broth (TYGB), 500 �l
of a calcium-glucose solution, 200 �l of a 25-mg/ml kanamycin and nalidixic acid solution, and 30 PFU
of FRNAPH-IV, used as a culture positive control. Finally, 5 ml of a Salmonella enterica serovar Typhimu-
rium WG49 suspension prepared as described in the ISO 10705-01 standard (36) was added. Biological
amplification was performed at 37°C for 4 h under agitation (110 rpm). Genome extraction from FRNAPH
infectious particles was then performed with 1 ml of the total suspension. After centrifugation (18,000 �
g, 3 min), 500 �l of the supernatant was collected and extraction was performed using a NucliSens
EasyMag system (bioMérieux, Marcy l’Etoile, France) in 50 �l of elution buffer. The genomes of each
FRNAPH subgroup were detected using the primers and probes developed by Wolf et al. (35) under the
conditions described in a previous study (19).

The detection limits of the ISO 10705-01 standard and the ICC-RT-qPCR method were 1 PFU/2 g of
HP and 1 PFU/20 g of whole shellfish flesh, respectively. Considering that FRNAPH are mainly found in
shellfish HP and that HP corresponds to 5% to 10% of the total shellfish mass, the detection limits of
these two methods were similar.

E. coli detection. E. coli in shellfish FIL was detected by direct impedance measurement, according
to NF V08-106 (67). The results were expressed as the most probable number (MPN), and the LOD was
66 MPN of E. coli/100 g of FIL.
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Statistical analyses. In order to rank the abundance of each microorganism in shellfish, a three-level
classification was applied. Thus, concerning the FRNAPH and NoV genomes, specimens were considered
negative (�) if no genomes were detected (�40 gc/g of HP), positive (�) if the concentrations were
between 40 and 400 gc/g of HP (i.e., 10 times the LOD), and quantifiable (��) if the concentrations were
over 400 gc/g of HP. Concerning infectious FRNAPH, samples were considered negative (�) when the
ICC-RT-qPCR approach gave a quantification cycle value greater than 37. Because FRNAPH-I have a better
growth rate, the threshold used to differentiate positive (�) from strongly positive (��) samples was 20
for this subgroup, while it was 32 for FRNAPH-II and -III (37). Finally, concerning the presence of E. coli,
samples were considered negative (�) when the concentrations were below 66 MPN/100 g of FIL, and
the threshold used to differentiate positive (�) from strongly positive (��) specimens was 4,600
MPN/100 g of FIL (i.e., the threshold used in European regulations). The relationships between these
parameters were investigated using Fisher’s exact test.

Concerning microorganism behavior during the depuration processes of the oysters, the raw data
were subjected to logarithmic transformation before the statistical analysis was carried out. The non-
parametric Wilcoxon signed-rank test was used to compare the medians of the concentrations under the
two conditions. Cochran’s test for the homogeneity of variances was used to compare the variances
associated with the measurements made at a given time for each of the microorganisms considered.
Regression analysis was performed to describe the variation in concentrations which was observed for
each microorganism under the given experimental conditions as a linear function of time. The linearity
of the depletion models thus obtained was tested by using the F test. In practice, the F test compares
the variance of the departures from the fitted linear regression line with the experimental variance. Note
that if the linear model is adequate, the previous two variances are equal. All statistical analyses were
generated using R statistical software (v.3.4.0).

Finally, the decay coefficients corresponding to the given experimental conditions were estimated in
two different ways, that is, (i) from the slope of the fitted regression decay line and (ii) as the weighted
mean of the log empirical decay rate calculated from each observation weighted by the associated
duration.
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